by Leon Montealegre
Particle-Based Fluid Simulation for Interactive Application Müller et al. | Unified Particle Physics for Real-Time Applications Macklin and Müller et al. | Position Based Fluids Müller and Macklin |
---|---|---|
Density | Pressure |
---|---|
$$ A = \rho $$ $$ \rho_i = \sum_j m_jW(x_{ij}, h) $$ |
$$ A = p $$ $$ p = k\rho $$ $$ p_i = k(\rho_i - \rho_0) $$ |
External (Gravity) | Pressure | Viscosity |
---|---|---|
$$ f^{gravity}_i = \rho_i g $$ |
$$ f^{pressure}_i = -\nabla p_i $$ $$ f^{pressure}_i = \sum_j\frac{m_j}{\rho_j}p_j\nabla W(x_{ij}, h) $$ |
$$ f^{viscosity}_i = \mu\nabla^2 p_i $$ $$ f^{viscosity}_i = \mu\sum_j \frac{m_j}{\rho_j}u_j\nabla^2 W(x_{ij}, h) $$ |
Density Constraint | Distance Constraint (AKA Provot Correction) |
---|---|
$$ C_i(x_i,\ldots,x_n) = \frac{\rho_i}{\rho_0} - 1 $$ $$ C(x + \Delta x) = 0 $$ |
$$ C_i(x_i, x_j) = |x_i - x_j| - d_0 $$ $$ C(x + \Delta x) = 0 $$ |